

National Education Society (R.) Jawaharlal Nehru New College of Engineering, Shivamogga (Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC - B', UG

(Approved by AICTE, New Delhi, Certified by UGC 2f & 12B, Accredited by NAAC –'B', UG programs:CE,ME,EEE,ECE,CSE,ISE, ETE PG Programs: MBA, acredited by NBA:1.7.2022 to 30.6.2025, Recognized by Govt. of Karnataka and Affiliated to VTU, Belagavi)

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Sl.No	Branch	Sem	Subject	CO,S
1	CIVIL	3	Transform Calculus, Fourier Series and Numerical Techniques Mathematics (18MAT31)	 To remember the definition of Laplace transform, Fourier series, Fourier transform, Z- transform formulae of numerical methods and calculus of variations. To understand the concept of periodic function ,unit step function, convolution theorem in Laplace transform Fourier series of period 2 pi, arbitrary period 21 ,Half range series, Z-transform, numerical methods and calculus of variations. To apply the concept of Laplace transform in second and higher order linear differential equations Harmonic analysis in Fourier series, Z-transform in difference equations, Numerical solution of ODE's by various methods and Euler's equation, Geodesics, in calculus of variations.
2		3	Strength of Materials (18CV32)	 Evaluate the strength of various structural elements' internal forces such as compression, tension, shear, bending and torsion. Evaluate the behaviour and strength of structural elements under the action of compound stresses and thus understand failure concepts.

2018 Scheme

				3. Draw the bending moment and shear force
				diagrams for all types of beams with various
				loading conditions.
				4. Discuss the basic concept of analysis and
				design of members subjected to torsion,
				Bending and deflection of beams.
				5. Explain the basic concept of analysis and
				design of structural elements such as columns
				and struts.
				1. Apply the fluid properties and concepts of
				pressure and its measurements and analyze the
				real world problems
			Fluid Mechanics (18CV33)	2. Analyze and solve the hydro-statics and
		3		kinematics of fluid problems
				3. Apply the principles of fluid dynamics in
3				analyzing the real fluid flow problems
				4. Apply the flow measuring devices such as
				orifice, mouthpiece, notches and weirs in real
				situations
				5. Analyze and solve pipe flow problems,
				pipe network and surge in pipes
				1. Identify and characterize different building
				materials and also enumerate different methods
				of construction.
				2. Investigation of soil condition and SBC to
				decide and design suitable foundation.
			Building Materials and	3. Architectural design of staircase and
4		3	Construction (18CV34)	different types of masonry.
				4. Distinguish and characterize the materials
				and supervision of different floors and roofs.
				5. Apply the knowledge of building finishing
				materials and components with modern

				1. Illustrate basic principle of surveying,
				determine the angle and distance using different
				survey instruments.
				2. Interpret the compass survey data, identify
				local attraction and apply corrections.
				3. Apply knowledge of levelling in
5		3	Basic Surveying (18CV35)	determination of elevation of different objects.
				4. Enumerate various methods of plane table
				surveying and plotting, traversing by
				orientation method.
				5. Analyse the obtained spatial data and
				compute areas and volumes. Represent 3D data
				on plane figures as contours.
				1. Apply geological knowledge in different
			Engineering Geology (18CV36)	civil Engineering practice.
		3		2. Students will acquire knowledge on
				durability and competence of foundation rocks,
				and confidence enough to use the best building
				materials.
				3. Civil engineers are competent enough for
-				the safety, stability, economy and life of the
6				structures that they construct.
				4. Solve various issues related to ground
				water exploration, build up dams, bridges,
				tunnels which are often confronted with ground
				water problems.
				5. Intelligent enough to apply GIS, GPS and
				Remote Sensing as a latest tool in different civil
				engineering construction.
				1. Have constitutional knowledge and legal
				literacy.
			Constitution of India,	2. Understand Engineering and Professional
/		5	Cyber Law (18CPC39)	ethics and responsibilities of Engineers.
			• • • •	3. Understand the cybercrimes and cyber
				laws for cyber safety measures.

				1. Prepare, read and interpret the drawings in
				a professional set up.
				2. Know the procedures of submission of
8		3	Planning & Drawing	drawings and Develop working and submission
			(18CVL37)	drawings for building.
				3. Plan and design a residential or public
				building as per the given requirements.
				1. Asses the mechanical properties of
				structural materials
			Building Materials Testing	2. Determine the hardness of ferrous and
9		3	Laboratory (18CVL38)	nonferrous metals
				3. Analyze the physical characteristics of
				various building materials
				1. solve rank of matrix by elementary row
			Additional Mathematics - 2 (18MATDIP41)	operations - Echelon form. Consistency of
				system of linear equations - Gauss elimination
		4		method
				2. Demonstrate various physical models
				through 2 nd and higher order linear differential
10				equation and solve such equations.
10				3. Construct a variety of Partial differential
				equation and solution by direct integration,
				method of separation of variables.
				4. Apply the knowledge of numerical methods
				,infinite series and series solution of ordinary
				differential equation to explain various physical
				and engineering problems
				1. Remember the concept of probability to solve
				the problems on probability distribution and
			Complex Analysis	joint probability distribution.
11		4	Probability And Statistical	2. Understand the concept of correlation,
			Methods (18MAT41)	regression and curve fitting.
				3. Demonstrate testing of hypothesis of
				sampling distribution.

				4. Apply the knowledge of complex
				differentiation and complex integration in
				diverse fields related to field theory and signal
				processing.
				1. Identify different forms of structural systems
				with Static & Kinematic Indeterminacy;
				Understand Concepts of influence lines-ILD for
				reactions, SF and BM for determinate beams &
				trusses.
				2. Construct ILD and analyse the beams and
				trusses subjected to moving loads.
12		4	Analysis of Determinate Structures (18CV42)	3. Understand the Moment area & Conjugate
				beam theorems and its applications to determine
				the rotation and deflections of beams.
				4. Understand the energy principles and energy
				theorems and its applications to determine the
				deflections of trusses and beams.
				5. Determine the stress resultants in arches and
				cables.
				1. Apply dimensional analysis to develop
				mathematical modelling and compute the
				mathematical modelling and compute the parametric values in prototype by analyzing the
				mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters.
				mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters.2. Design the open channels of various cross
				mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters.2. Design the open channels of various cross sections including economical channel sections
				mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters.2. Design the open channels of various cross sections including economical channel sections3. Apply energy concepts to flow in open
13		4	Applied Hydraulics	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions.
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions. 4. Apply the laws of physics to calculate the
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions. 4. Apply the laws of physics to calculate the force exerted by the water jet on vanes.
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions. 4. Apply the laws of physics to calculate the force exerted by the water jet on vanes. 5. Design turbines for the given data, and to
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions. 4. Apply the laws of physics to calculate the force exerted by the water jet on vanes. 5. Design turbines for the given data, and to know their operation characteristics under
13		4	Applied Hydraulics (18CV43)	 mathematical modelling and compute the parametric values in prototype by analyzing the corresponding model parameters. 2. Design the open channels of various cross sections including economical channel sections 3. Apply energy concepts to flow in open channel sections, calculate energy dissipation and to compute water profiles at different conditions. 4. Apply the laws of physics to calculate the force exerted by the water jet on vanes. 5. Design turbines for the given data, and to know their operation characteristics under different operating conditions

				1. Analyze the functional role of ingredients of
				concrete and relate material characteristics and
				their influence on micro structure of concrete.
				2. Examine the concrete behaviour on its fresh
14				and hardened properties.
				3. Design a concrete mix for field applications
		4	Concrete Technology	as per professional codes by applying the mix
			$(16C \vee 44)$	proportion principles.
				4. Evaluate the effects of environment on the
				service life performance, properties and failure
				modes of structural concrete.
				5. Recognize the characteristics of special types
				of concrete.
	-			1. Apply the knowledge of geometric principles
		4	Advanced Surveying (18CV45)	in analyzing height and distance to arrive at
				surveying problems
				2. Interpreting aerial photo by photogrammetry
				to obtain geo-spatial data and analyse the same
15				to appropriate engineering problems.
				3. Analyze remote sensing and GIS data for
				survey problems with the use of electronic
				instruments,
				4. Design and implement the different types of
				curves for deviating type of alignments.
				1. Forecast the future population data and water
				demands required to design an efficient Water
				Supply Scheme.
				2. Compare and choose suitable source of water
				for a given locality.
16		4	Water Supply & Treatment	3. Assess the results to quantify physical,
			Engineering (16C v 40)	chemical and biological impurities present and
				design various treatment plant units.
				4. Determine the optimum dosage of chemicals
				required to treat the raw water and design
	1			

				5. Plan a water distribution network of the water
				supply line for residential buildings
				1. The students able to identify the minerals,
				rocks and utilize them effectively in civil
				engineering practices.
				2. The students will interpret and understand the
				geological conditions of the area for
				implementation of civil engineering projects.
				3. The students will interpret subsurface
			Engineering Goology	information such as thickness of soil, weathered
17		4	Laboratory (18CVL47)	zone, depth of hard rock and saturated zone by
				using geophysical methods.
				4. The students will learn the techniques in the
				interpretation of LANDSAT Imageries to find
			Fluid Mechanics and Hydraulic Machines Laboratory (18CVL48)	out the lineaments and other structural features
				for the given area.
				5. The students will be able to identify the
				different structures in the field.
	-			1. The use of various instruments for fluid flow
				measurement
18		4		2.Working of Hydraulic machines under
				various conditions of working
	-			1. Analyze and understand the construction
				management process along with different
				scheduling techniques.
				2. Perceive and solve variety of issues that are
				encountered by every professional in
19		5	& Entrepreneurship	discharging professional duties.
			(18CV51)	3. Realize the professional obligations
				effectively with global outlook.
				4. Analyze the entrepreneurship process and
				opportunities available to become an
				entrepreneur with knowledge of economics.
	-		Analysis of Indeterminate	1. Determine the moment in indeterminate

				inertia and subsidence using slope defection
				method
				2. Determine the moment in indeterminate
				beams and frames of no sway and sway using
				moment distribution method.
				3. Construct the bending moment diagram for
				beams and frames by Kani's method.
				4. Construct the bending moment diagram for
				beams and frames using flexibility method
				5. Analyze the beams and indeterminate frames
				by system stiffness method.
				1. Use the design philosophy of RCC structural
			Design of RC Structural Elements (18CV53)	elements by limit state design.
				2. Solve the engineering problems of RC beams
		5		subjected to flexure, shear and torsion
21				3. Design the RC Structural elements of slabs,
				columns, footing and staircase
				4. Analyze the culture of practicing the codes
				for evaluation of strength, serviceability and
				durability of RC structures.
			Basic Geotechnical	1. Determine the index properties and classify
		5		the soils
				2. Draw compaction curve of soil and apply the
22				knowledge of compaction in field.
			Engineering (18C v 34)	3. Compute the flow of water through soils.
				4. Determine shear strength and Consolidation
				parameters of soil
				1. Estimate the quantity of flow in sewer, select
				appropriate sewer materials, and learn laying
			Municipal Wastewater	and testing of sewers, low cost treatment
23		5	Engineering (18CV55)	methods and house drainage connection.
				2. Design the sewers and Assess the waste water
				characteristics.

				3. Design wastewater treatment units by
				applying appropriate treatment methods and
				Evaluate self-purification of streams.
				4. Design and illustrate the importance of
				biological treatment of waste water.
				5. Illustrate the need of advanced wastewater
				treatment technologies and Execute proper rural
				sanitation planning.
				1. Acquire the capability of proposing a new
				alignment or re-alignment of existing roads,
				conduct necessary field investigation for
				generation of required data.
			Highway Engineering (18CV56)	2. Evaluate the Engineering properties of the
				materials and suggest the suitability of the same
24		5		for pavement construction.
				3. Design road geometrics , structural
				components of pavement and drainage.
				4. Evaluate the highway economics by few
				selective methods also will have a basic
				knowledge of various highway financing
				concepts.
				1. Understand the principles of ecology and
				environmental issues that apply to air, land, and
				water issues on a global scale
				2. Develop critical thinking and/or observation
				skills, and apply them to the analysis of a
				problem or question related to the environment.
25		5	Environmental Studies	3. Demonstrate ecology knowledge of a
			(18CIV59)	complex relationship between biotic and abiotic
				components.
				4. Apply their ecological knowledge to illustrate
				and graph a problem and describe the realities
				that managers face when dealing with complex
				issues.

				1. Apply the knowledge of surveying in setting
				out geometric shapes with chain and compass
				surveying principles.
				2. To determine the distance and difference in
				elevation of the given object by levelling.
				3. To determine the depth of cut and depth of
			Surveying Practice	fill for given formation level.
26		5	(18CVL57)	4. To determine the height of an object by
				theodolite survey through single and double
				plane method.
				5. To determine tachometric constant by
				theodolite.
				6. To determine the distance and area using
				plane table surveying.
			Concrete and Highway Materials Laboratory (18CVL58)	1. Determine the quality and suitability of
				cement, normal concrete and self-compacting
27		5		concrete
				2. Test the road aggregates and bitumen for their
-				suitability as road material.
				3. Test the soil for its suitability as subgrade soil
				for pavements.
				1. Possess a knowledge of Steel Structures
				Advantages and Disadvantages of Steel
				structures, steel code provisions and plastic
				behaviour of structural steel
				2. Understand the Concept of Bolted and
				Welded connections.
			DESIGN OF STEEL	3. Understand the Concept of Design of
28		6	STRUCTURAL	compression members, built-up columns and
				columns splices.
				4. Understand the Concept of Design of tension
				members, simple slab base and gusseted base.
				5. Understand the Concept of Design of
				laterally supported and un-supported steel
				beams.

29	6	APPLIED GEOTECHNICAL ENGINEERING (18CV62)	 Identify the methods of Subsurface exploration and dewatering. Compute the stresses in soil. Analyze the slope stability and determine the lateral earth pressure of soil. Determine the bearing capacity and settlements of soil.
30	6	HYDROLOGY AND IRRIGATION ENGINEERING (18CV63)	 Explain the importance of hydrology and its components. Analyze the data and the losses in precipitation Estimate runoff and develop unit hydrographs to perform Flood forecasting. Evaluate the benefits, ill-effects of irrigation and find the quantity of irrigation water and frequency of irrigation for various crops. Design the canal and compute the reservoir.
31	6	Solid Waste Management (18CV642)	 Design the canal and compute the reservoir capacity. Analyze the composition of solid waste and distinguish the collection and transportation means for solid waste management. Illustrate the processing systems of solid waste management. Describe the scientific management of Hazardous and Non-Hazardous waste. Design a suitable processing system for solid waste management elements.
32	6	Railway,harbours,tunnelling & Airports (18CV645)	 Acquires capability of choosing alignment and also design geometric aspects of railway system, runway and taxiway. Suggest and estimate the material quantity required for laying a railway track and also will be able to determine the hauling capacity of a locomotive.

				3. Develop layout plan of airport, harbor, dock
				and will be able relate the gained knowledge to
				identify required type of visual and/or
				navigational aids for the same
				4. Apply the knowledge gained to conduct
				surveying, understand the tunnelling activities.
				1. Analyze the human factors and vehicular
				factors in traffic engineering design and Traffic
				flow parameters
				2. Conduct different types of traffic surveys and
				analysis of collected data using statistical
				concepts
33		6	Traffic Engineering	3. Design the traffic signals and Intersections
			(18CV652)	and distinguish various visual aids of traffic and
				choose appropriate traffic control devices
				4. Comprehend various traffic safety measures
				and mitigations
				5. Explain Traffic Management Techniques
				available to manage the traffic flow
			Software Application Laboratory (18CVL66)	1. Use industry standard software in a
		6		professional set up.
				2. Understand the elements of finite element
34				modelling ,specification of loads and boundary
_				condition, performing analysis and
				interpretation of results for final design
				3. Develop customized automation tools
				1. Determine the physical, chemical and
				biological characteristics of water and
				wastewater.
				2. Determine the optimum dosage of coagulant
35		6	Environmental Engineering	for a given water and waste water sample.
			Laboratory (18CVL6/)	3. Estimate the percentage of available chlorine
				in a given bleaching powder sample and also to
				determine residual chlorine in a treated
				municipal water sample.
				-

				4. Design Sedimentation tank dimensions
				through Total Solids Test and Quantify the
				ambient air pollutant concentrations and to
				measure the noise levels in and around the
				society.
				1.To understand the practical applications of
			Extensive Survey Project	surveying by using total station in teams and
36		6	(18CVEP68)	also to learn time mangement and
				communication skills
				1. Prepare detailed and abstract estimates for
				roads and buildings.
				2. Develop the specification for different items
				of work in a building & Analyze the rate of
37	37	7	Quality Surveying and Contract Management	items of work based on material and
57	,	(18CV71)	workmanship.	
				3. Interpret Contract documents of domestic and
				international construction works.
				4. Prepare valuation reports of buildings.
				1.Provide basic knowledge in the areas of limit
				state method and concept of design of RC and
				Steel structures
				2.Identify, formulate and solve engineering
				problems in RC and Steel Structures
				3.Give procedural knowledge to design a
				system, component or process as per needs and
38		7	Design of RCC and Steel	specifications of RC C structures
			Structures (16C V 72)	4. Imbibe the culture of professional and ethical
			responsibilities by following codal provisions in	
				the analysis, design of RC and Steel Structures.
			5. Provide factual knowledge on analysis and	
				design of RC Structural elements, who can
				participate and
				succeed in competitive examinations
	1		Ground Water &	1. Define the geological stratum and summarize
39		7	Hydraulics (18CV742)	the characteristics of aquifers.

			2. Determine the various Aquifer parameters to
			assess ground water.
			3. Interpreting the uni-directional, radial flow
			for steady, unsteady conditions of an aquifers
			and examining the aquifer parameters by
			analytical and graphical methods.
			4. Locate the zones of ground water
			resources and estimate the quantity of ground
			water in subsurface strata through geophysical
			exploration.
			5. Select particular type of well based on
			suitability and augment the ground water
			storage by adopting various ground water
			recharge technique.
			1. Solve the problems associated with air
			pollution impact on human health, plants,
			animals and materials.
			2. Apply the basic principles and theoretical
			approaches to contribute towards the
			meteorological parameters in deriving air
			quality models.
			3. Choose an appropriate sampling and analysis
40	7	Air Pollution and Control	techniques for gaseous as well as particulate air
		$(10C \sqrt{752})$	pollutants.
			4. Propose air pollution control techniques
			applicable to particulate and gaseous air
			pollutant.
			5. Describe the effects of air pollution due to
			automobiles, control measures of noise
			pollution, environmental policies, acts and
			standards.
			1. Define the geological stratum and summarize
	_		the characteristics of aquifers.
41	1	Ground Water Hydraulics (18CV734)	2. Determine the various Aquifer parameters to
		· · · · · · · · · · · · · · · · · · ·	assess ground water.

				3. Interpreting the uni-directional, radial flow
				for steady, unsteady conditions of an aquifers
				and examining the aquifer parameters by
				analytical and graphical methods.
				4. Locate the zones of ground water
				resources and estimate the quantity of ground
				water in subsurface strata through geophysical
				exploration.
				5. Select particular type of well based on
				suitability and augment the ground water
				storage by adopting various ground water
				recharge technique.
				1. Check the stability of gravity dam
				2. Estimate the quantity of seepage by
42			Casagrande's method through earth dams	
		7	Design of Hydraulic Structures (18CV744)	3. Design spillway and aprons for diversion
				works
				4. Determine the type of canal regulation work
				for canal network
				1. Design, conduct and administer surveys to
				provide the data required for transportation
				planning
				2. Supervise the process of data collection about
			Urban Transport Planning (18CV745)	travel behavior and analyze the data for use in
43		7		transport planning
				3. Develop and calibrate modal split, trip
				generation rates for specific types of land use
				developments
				4. Adopt the steps that are necessary to
				complete a long-term transportation plan
				1. Determine numerically the solution of linear
A A		7	Numerical Methods and	system of equations using Gauss elimination
44		/	Applications (18CV752)	method, Gauss Jordan method and iterative
				methods

			2. Express an approximate interpolating
			polynomials for equal and unequal intervals
			using Lagrange's interpolation, Newton's
			divided difference interpolation, Newton's
			forward and backward difference formulae.
			3. Evaluate the Numerical integration using
			Trapezoidal, Simpson's 1/3 rule , Romberg's
			method ,Two point and three point Gaussian
			quadrature formulae
			4. Solve Initial Value Problems for Ordinary
			Differential Equations using Taylor's series
			method - Euler's method - Modified Euler's
			method - Fourth order Runge-Kutta method,
			Milne's and Adams-Bash forth predictor
			corrector methods for First order differential
			equations.
			5. Solve Boundary Value Problems in Ordinary
			and Partial Differential Equations using Finite
			difference techniques, explicit and implicit
			methods.
			1. Be aware of the Scale Factors, Sections of
	_	Computer Aided Detailing	drawings,
45	7	Of Structures (18CVL76)	2. Draft the detailing of RC and Steel Structural
			member.
			1. Identify the different types of soil.
			2. Determine the index properties to classify the
			soil.
46	7	Geotechnical Engineering	3. Assess the strength properties of soil.
			4. Demonstrate auger samplers, rapid moisture
			meter, swell pressure test and standard
			penetration test.
			1. Identify the requirements of real world
	_	Project Work Phase 1	problems and articulate the appropriate
47		(18CVP78)	literature review by analyzing previous
			researchers' work.
		(18CVP78)	Interature review by analyzing previou researchers' work.

				2. Formulation of Project objective with respect
				to literature review and construct methodology
				3. Demonstrate an ability to work in teams and
				manage the conduct of the research study
				4. Prepare report and present the synopsis of the
				project using good oral and written skills.
				1. Apply the provisions of IS 1343 1980 code to
				the design of flexure and shear of pre stressed
				concrete structures.
				2. Perceive the concept of pre-stressing and
10			Design of Pre-stressed	analyze the behaviour of concrete structures
48		8	Concrete (18CV81)	3. Determine the losses of pre-stress in pre-
				stressed concrete structures
				4. Analyze the deflection of beams and camber
	_			of pre-stressed concrete members and design
				the end blocks.
				1. Understand the cause of deterioration of
				concrete structures.
				2. Able to assess the damage for different type
			Rehabilitation &	of structures
49		8	Retrofitting (18CV824)	3. Summarize the principles of repair and
				rehabilitation of structures
				4. Recognize ideal material for different repair
				and retrofitting technique
	-			1. Systematically generate and compile required
				data's for the design of pavement
				2. Compute the stresses and deflection in
			Pavement Design	flexible and rigid pavements
50		8	(18CV825)	3. Design of flexible and rigid pavements
				4. Evaluate the pavement distresses and
				recommend maintenance measures for flexible
				and rigid pavements
			Droject Work Dhase 2	1. Develop critical thinking and problem
51		8	(18CVP83)	solving skills

			2. Adequately adopt the methodologies to
			achieve defined objectives of the project work
			undertaken
			3. Evaluate the outcome of the work taken and
			its impact on the societal needs
			4. Demonstrate an ability to work in teams and
			manage the conduct of research study
			5. Organize and compile the work done in the
			research topic, prepare report and present
			outcome of the project using good oral and
			writing skills
			1. Acquire skills to carry out a literature survey.
			2. Summarize the study carried out in emerging
			areas of Civil Engineering.
52	8	Technical Seminar (18CVS84)	3. Present the outcomes using good
			communication skills.
			4. Organize and compile the outcomes using
			good written skills.

2021 Scheme

1. To solve ordinary differenti equations using Laplace transform 2. Demonstrate the Fourier series study the behaviour of period functions and their applications avetem communications digital sign	Sl.No	Branch	Sem	Subject	CO,S
1 CIVIL 3 Fourier Series and Numerical Techniques (21MAT31) system communications, digital sign processing and field theory 3	1	CIVIL	3	Transform Calculus, Fourier Series and Numerical Techniques (21MAT31)	 To solve ordinary differential equations using Laplace transform Demonstrate the Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory To use Fourier transforms to analyze problems involving continuous-time signals and to apply Z-Transform techniques to solve difference

				4. To solve mathematical models
				represented by initial or boundary value
				problems involving partial differential
				equations
				5. Determine the extremals of
				functionals using calculus of variations
				and solve problems arising in dynamics
				of rigid bodies and vibrational analysis.
				1. To develop skills of plane surveying
				by compass and plane table methods.
				2. To determine the elevation of objects
				with levelling and compute areas and
				volumes
			Geodetic Engineering	3. To determine linear measurements of
2		3	(21CV32)	theodolite survey.
				4. To design compound, transition and
				reverse curve.
				5. To solve survey problem by remote
				sensing and GIS data using LiDAR and
				Drone.
				1. Evaluate the behavior when a solid
				material is subjected to various types of
				forces namely (Compressive, Tensile,
				Thermal, Shear, flexure, Torque,
				internal fluid pressure) and estimate
				stresses and corresponding strain
				developed.
3		3	Strength of Materials	2. Estimate the forces developed and
			(21CV33)	draw a schematic diagram for stresses,
				forces, moments for simple beams with
				different types of support and are
				subjected to various types of loads
				3. Evaluate the behaviour when a solid
				material is subjected to Torque and
				internal fluid pressure and estimate
				-

				stresses and corresponding strain
				developed.
				4. Distinguish the behaviour of short and
				long column and calculate load at failure
				& explain the behaviour of spring to
				estimate deflection and stiffness
				5. Examine and Evaluate the mechanical
				properties of various materials under
				different loading conditions
				1. Apply geological knowledge in
				different civil engineering practice
				2. Students will acquire knowledge on
				durability and competence of
			Earth Resources and	foundation rocks, and confidence
				enough to use the best building materials
				3. competent enough to provide services
		3		for the safety, stability, economy and
4				life of the structures that they construct
			Engineering (21CV34)	4. Able to solve various issues related to
				ground water exploration, build up
				dams, bridges, tunnels which are often
				confronted with ground water problems
				5. Intelligent enough to apply GIS, GPS
				and remote sensing as a latest tool in
				different civil engineering for safe and
				solid construction.
<u> </u>				1. To analyze the importance fire safety
				2. To learn techniques involved in fire
5		3	Fire Safety in Buildings (21CV385)	safety
			(210,000)	3 To design fire resistant buildings
				1. Able to interpret the drawings in a
6		3	Computer Aided Building Planning and Drawing	protessional set up.
		5	(21CVL35)	2. Able to draw the residential or public
				building as per the requirement.

				3. Able to create sanction drawings as
				per bye-laws
				1. Understand social responsibility
7		3	Social Connect and	2. Practice sustainability and creativity
,		5	Responsibility (21SCR36)	3. Showcase planning and
				organizational skills
				1. Use the concept of Analytic function
				and complex potential to solve the
				problems in electromagnetic theory and
				complex integration in air foil and image
				processing.
				2. Obtain series solution ODEs
8		4	Maths for Communication	3. Fit an appropriate mathematical
			Lingineers (211417171)	model for the statistical data by using
				correlation and regression analysis.
				4. Apply discrete and continuous
				probability distribution in engg. field
				5. Construct joint probability
				distribution and testing the hypothesis
				1.Design of turbines for the given data
				and understand their operation
				characteristics
				2.Apply Principles of Mathematics to
				represent Kinematics and Bernoulli's
				principles
9	9	4	Hydraulics (21CV42)	3.Compute discharge through pipes,
				notches and weirs
				4.Design of open channels of various
				cross sections
				5.Design of turbines for the given data
				and understand their operation
				characteristics
			Public Health Engineering	1. Forecast the future population data
10		4	(21CV43)	and water demands required to design an
				efficient Water Supply Scheme.

				2. Assess the results to quantify
				physical, chemical and biological
				impurities present and design various
				water treatment plant units.
				3. Assess the waste water
				characteristics.
				4. Design wastewater treatment units by
				applying appropriate treatment
				methods.
				5. Design and illustrate the importance
				of biological treatment of waste water.
				1. Evaluate slope and deflections in
				beams using geometrical methods.
			Analysis of Structures (21CV44)	2. Determine deflections in trusses and
11				frames using energy principles.
				3. Analyse arches and cables for stress
		4		resultants.
11				4. Apply slope defection method in
				analysing indeterminate structures and
				construct bending moment diagram.
				5. Analyse continuous beams, frames
				and trusses using stiffness matrix
				method of analysis.
				1. Holistic vision of life and Socially
				responsible behavior
				2. Environmentally responsible work
12		4	Universal Human Values	and Ethical human conduct
		4	(21UH49)	3. Having Competence and Capabilities
				for Maintaining Health and Hygiene
				4. Appreciation and aspiration for
				excellence (merit) and gratitude for all
			Constitution of India and	1.Analyse the basic structure of Indian
13		4	Professional Ethics (21CIP47)	Constitution

DPSP's and fundamental duties (
	FD's)
of our constitution	
3. Know about our Union Govern	ment,
Political Structure & codes, procee	ures
4. Understand our State Executi	ve &
Election system of India	
5.Remember the Amendments	and
Emergency Provisions, other imp	ortant
provisions given by the constitution	n
1. Understand the Definition, Conc	ept &
Objectives of the terms cost effe	ctive
construction and green building.	
2. Apply cost effective Technol	ogies
and Methods in Construction.	
3. Understand the Problems du	ie to
14 4 Green Building Global Warming.	
4. Asses the green buildings	using
different Green Building	ating
Systems.	
5. Analyze the Utility of Solar E	nergy
and Green Composites for	green
buildings.	
1. Comprehend the relations bet	ween
minerals and rocks based on	their
physical properties	
2. Assess the suitability of mat	erials
used in building construction	
15 4 Engineering Geology Lab 3. Differentiate geolo	gical
(21CVL46) investigations necessary for	the
construction of dams, bridges,	and
tunnels	
4. Describe the ground	water
investigation using resistivity meth	ods

				5. Understand the applications of
				Geospatial technology in Civil
16				Engineering.
		4	Additional Mathematics I (21MATDIP41)	1. Solve rank of matrix by elementary
				row operations - Echelon form.
				Consistency of system of linear
				equations - Gauss elimination method
				2. Demonstrate various physical models
				through 2 nd and higher order linear
				differential equation and solve such
				equations.
				3. Construct a variety of Partial
				differential equation and solution by
				direct integration, method of separation
				of variables.
				4. Apply the knowledge of numerical
				methods, infinite series and series
				solution of ordinary differential
				equation to explain various physical and
				engineering problems